
Improving the Test Quality of Safety Critical
Software by using Combined KPSO Mutation

Method.
Dr.S.Preetha Gangarajam,

Assistant Professor, MPhil Scholar,
Department of Computer Science, Department of Computer Science,

Sri Ramakrishna College of Arts & Science for Women, Sri Ramakrishna College of Arts & Science for Women
Coimbatore District Coimbatore District

Abstract: Software Testing is the process of executing a
program or system with the aim of finding errors. 50% of the
total development time is spent on testing the software and
correcting them. Tests are commonly generated from
program source code, graphical models of software (such as
control flow graphs), and specifications / requirements.
Testing provides a primary means for assuring software in
safety-critical systems. Creating test cases that efficiently
checks for faults in software is always a problem. To solve this
problem, mutation testing, a fault - based testing technique,
used to find the effectiveness of test cases. It is an alternative
or complementary method of measuring test sufficiency,
achieve the test coverage levels recommended or mandated by
safety standards and industry guidelines is applied to ensure
the safety criticality and quality of the system. The mutation
testing approach proves the test quality by replacing the
original contents of the program with mutants generated. In
this paper, mutation testing reduces high computational
overhead by using every test case to find out the mutants by
introducing a new method called combined K-means and
Particle Swarm optimization (KPSO) algorithm. It aims to
find out the optimal test cases which can predict the changes
occurred due to mutants in the program in an efficient
manner.

Keywords: Mutants, Faults, KPSO, Test cases, Clustering.

INTRODUCTION:
Software testing is an investigation conducted to provide
end-users with information about the quality of the product
or service under test. Software testing can also provide an
objective, independent view of the software to allow the
business to appreciate and understand the risks of software
implementation. Testing is an essential activity in the
verification and
validation of safety-critical software. It provides a level of
confidence in the end product based on the coverage of the
requirements and code structures achieved by the test cases.
It has been suggested that verification and validation
require 60 to 70 percent of the total effort in a safety-
critical software project.
Software testing can be stated as the process of validating
and verifying that a computer program/application/product:

 Meets the requirements that guided its design and
development,

 Works as expected,
 Can be implemented with the same characteristics,
 Satisfies the needs of end-users

However, for any other program, faults may occur in any
development phase of a software. Testing is fault-based
when it seeks to demonstrate that prescribed faults are not
in a program. It is assumed that a program can only be
incorrect in a limited fashion specified by associating
alternate expressions with program expression. Fault-
based testing is a software testing methodology using test
data designed to demonstrate the absence of a set of
prespecified faults; typically, frequently occurring faults.
For instance: demonstrate that the software
handles or avoids divide by zero correctly, test data
would include zero.
Creating test cases that efficiently checks for faults in
software is always a problem. To solve this problem,
mutation testing, a fault - based testing technique, used to
find the effectiveness of test cases. Mutation is a fault-
based testing technique, for evaluating, the quality of
software .The more efficient the test cases are, the more
testing can be performed in a given time.

MUTATION TESTING – AN OVERSIGHT:
 Mutation Testing adopts “fault simulation mode”. It has
been advocated as a technique for generating test cases by
inserting faults in a program and the effectiveness of test
suite is represented by ‘mutation score’. Though
powerful, mutation testing is computationally expensive,
as many mutants need to be produced and executed. The
testing technique address the problem of finding a small
set of mutation operators and determining the efficiency
of high order mutants using fragility values and fitness
function, which are sufficient for measuring test
effectiveness.
Mutation testing (or Mutation analysis or Program
mutation) is used to design new software tests and
evaluate the quality of existing software tests. Mutation
testing involves modifying a program's source code or
byte code in small way. Each mutated version is called a
mutant and tests detect and reject mutants by causing the
behavior of the original version to differ from the mutant.
This is called killing the mutant. Test suites are measured
by the percentage of mutants that they kill. New tests can
be designed to kill additional mutants. Mutants are based
on well-defined mutation operators that either mimic
typical programming errors or force the creation of
valuable tests. The purpose is to help the tester develop

S.Preetha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4235-4240

www.ijcsit.com 4235

ISSN:0975-9646

effective tests or locate weaknesses in the test data used
for the program or in sections of the code that are seldom
or never accessed during execution.
Mutation testing is done by selecting a set of mutation
operators and then applying them to the source program
one at a time for each applicable piece of the source code.
The result of applying one mutation operator to the
program is called a mutant. . If a test cases distinguish the
mutant program from the original program in term of
output then we say mutant are killed otherwise mutants
are alive.

For example:

 OriginalProgram

 Mutated Program

Now, for the test to kill this mutant, the following three
conditions should be met:

1. A test must reach the mutated statement.
2. Test input data should infect the program state by

causing different program states for the mutant and the
original program. For example, a test with a = 1 and b
= 0 would do this.

3. The incorrect program state (the value of 'c')
must propagate to the program's output and be checked
by the test.

4. These conditions are collectively called the RIP model.
 Weak Mutation Testing requires that only the first

condition is satisfied. It is closely related to code
coverage methods and requires much less computing
power.

 Strong mutation testing requires that both conditions
be satisfied. Strong mutation is more powerful, since
it ensures that the test suite can really catch the
problems.

 Equivalent Mutants: The resulting program is
behaviorally equivalent to the original one. Such
mutants are called equivalent mutants.

MUTATION OPERATORS:
Many mutation operators have been explored by
researchers. Here are some examples of mutation
operators for imperative languages:
 Replace each Boolean sub expression

with true and false.
 Replace each arithmetic operation with another,

e.g. + with *, - and /.
 Replace each Boolean relation with another,

e.g. > with >=, == and <=.
 Replace each variable with another variable declared

in the same scope (variable types must be
compatible).

 These mutation operators are also called traditional
mutation operators. There are also mutation operators for
object-oriented languages, for concurrent constructions,
complex objects like containers, etc. Operators for
containers are called class-level mutation operators.
Mutation operators have also been developed to perform
security vulnerability testing of programs.

LITERATURE SURVEY:
 The literature on mutation testing provides an oversight
on mutation testing and also discusses various surveys on
mutation testing. It also describes the tools, used to build
them effectively and helps in reaching a state of maturity
and applicability. Mutation testing has contributed a set
of approaches, tools, developments and empirical results.

S.NO YEAR NAME OF THE AUTHOR PUBLICATIONS

1 1988 Mathur Krauser,, and Rego
Mutant unification- mutants of the same type be grouped together
and that the groups be handled by different processors in the SIMD
system

2 1990. Choi and Mathur
Suggested scheduling mutant executions on the nodes of a hypercube
called PMothara.

3 1988. Hamlet
Embedded in a compiler and performed a version of instrumented
weak mutation which is the first. mutation-like testing system.

4 1985 Girgis andWoodward
 Implemented a system for Fortran-77 programs that integrates weak
mutation and data flow analysis

5 1985 Woodward and Halewood Introduced the idea of weak and strong mutation.

6 2002
Richardson ,Thompson and
Marick

Iimplemented a weak mutation system and reported results from
using test data generated strong mutation to find faults that were
injected into programs.

Mutation Score = number of mutants killed /
total number of mutants.

If (a && b) {

C = 1;

} else { c=0; }

If (a || b) {

C = 1;

} else { c=0; }

S.Preetha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4235-4240

www.ijcsit.com 4236

S.NO YEAR NAME OF THE AUTHOR PUBLICATIONS

7 2002.
Clark and McDermind, and
Chevalley and Thevenod-
Foss.Offutt

Developed MuJava-for oo applications for finding faults.

8 1985 P. J. Walsh Developed a measure of test case completeness

9 2002 Y. S. Ma, Y. R. Kwon Inter-class mutation operators for Java

10 2005
J. H. Andrews, L. C. Briand, and
Y. Labiche

An integrated system for program testing using weak mutation and
data flow analysis.

11 2006
James H. Andrews, Lionel C.
Briand, Yvan Labiche and
Akbar Siami Namin

Test coverage criteria: Block, Decision, C- use and P- use. Useful to
assess and compare cost-effectiveness.

12 1993
Ricky W. Butler and George B.
Finelli

Driver – to check output for corresponding input. To predict
hardware failures and to ensure reliability.

13 2006
 Hyunsook Do and Gregg
Rothermel

prioritization techniques using mutation faults, focusing on open
source Java programs like Junit and TSL to improve fault detection
rate.

14 2001 John Joseph Chilenski
 Structural coverage -requirements-based verification process.MCDC
- verification process executes each side of the sub domain partitions
defined by a decision’s conditions

15 2006 Lijun Shan and Hong Zhu
It proposes an approach called data mutation to generating a large
number of test data from a few seed test cases.

BACKGROUND STUDY:

Testing is used to assure the status of the software that is
not in software critical system. In the existing work
mutation testing is used to test the software critical level.
Mutation testing provides a repeatable process for
measuring the effectiveness of test cases and identifying
disparities in the test set.

In the existing work, C and Ada coding are taken
for checking the mutation process using MILU tool set.
The applications of every mutation operator created one
or more instances of code item and it is necessary to
evaluate the success of each mutant in order to identify
mutants whose behavior is identical to original program.
Each mutant was recompiled and, assuming that it passed
this process, was then run in a simulation environment. In
order to reduce the test re-execution time, the tests in this
study were run in parallel across numerous dedicated test
platforms. Live mutants represented potential
improvements to the test-case design. Erroneous
behavior may duplicate the local behavior of test cases.

 Equivalent mutants add no value to the process
since the behavior of these mutants matches the intended
implementation and therefore cannot be killed by the test
cases. Each instance required a manual review of the test-
case set to understand where it failed to kill the mutant.
Reviewing the mutants to determine equivalent behavior
is overhead and is difficult to automate.
KPSO Methodology and Process:
In this paper, in order to reduce the computational
overhead, k means clustering and PSO technology is
introduced. K- Means clustering is used to cluster the test
cases which are most similar to each other. In this work, the
test cases are clustered together based on max values and
min values. After finding out the best position i.e., center
point of every cluster, the PSO algorithm is applied to
every cluster which is used to find the optimal best values
i.e. test cases.

The k-Means algorithm is very effective with
regard to the computational time or parameter tuning but is
applicable to Gaussian clusters of equal volumes. The
connectivity principle yields clusters of various shapes but
the methods implementing it may suffer from the ’chaining
effect’ that causes undesirable elongated clusters, or are
very sensitive to parameters.

In order to deal with clusters of various shapes, a
locality concern may be used:”neighboring” data items
should share the same cluster. We propose a Swarm
algorithm called PSO-kMeans which implements this
simple connectivity principle and introduces it within k-
Means, taking thus into account simultaneously the local
and the global distribution in data.

Particle swarm optimization (PSO) is a
computational method that optimizes a problem by
iteratively trying to improve a candidate solution with
regard to a given measure of quality. PSO optimizes a
problem by having a population of candidate solutions,
here dubbed particles, and moving these particles around
in the search-space according to simple mathematical
formulae over the particle's position and velocity.

Each particle's movement is influenced by its local
best known position and is also guided toward the best
known positions in the search-space, which are updated
as better positions are found by other particles. This is
expected to move the swarm toward the best solutions. In
this work, PSO finds the best value of the each candidate
the algorithm found the best location for changing the
velocity of the each particle.

The K-means algorithm is a fast method due to its
simple and small number of iterations. But the
dependency of the algorithm on the initialization of the
centers has been a major problem and it usually gets stuck
in local optima though it tends to converge faster than the
PSO algorithm. Using the merits of both algorithms, PSO
and K-means are combined.

S.Preetha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4235-4240

www.ijcsit.com 4237

Test Case Generation
 The possible test cases (inputs) will be generated

for finding the criticality of the software and to
compare the result of the programs without
mutation and after mutation.

 This test case generation can produce two types of
results. Those are survived mutants and the kill
mutants.

 Survived mutants are the mutants who cannot be
find out after applying test cases.

 Kill mutants are the one which will be identified
and deleted by the test cases.

 Thus the test cases will be generated to reduce the
survived mutants in order to improve the software
functionality.

Clustering test cases
The K-means algorithm groups the set of data points in
space into a predefined number of clusters and Euclidean
distance is commonly used as a similarity measure.
 Place K points into the space represented by the

objects that are being clustered. These points
represent the initial group is reached.

 Calculate the distance between the cluster centre
and the data vectors according to the eq.,

 Assign each object to the group that has the
minimum distance.

 When all the objects have been assigned
recalculate the cluster center according to eq.,

Finding optimal test cases

 The K-means algorithm is a fast method due to its
simple and small number of iterations.

 But the dependency of the algorithm on the
initialization of the centers has been a major
problem and it usually gets stuck in local optima
though it tends to converge faster than the PSO
algorithm.

 PSO clustering algorithm performs a global search
in the entire solution space.

 Using the merits of both algorithms, PSO and K-
means are combined.

 In the new algorithm a single particle represents a
set of cluster centers, that is, a particle represents
one possible solution for clustering and the
position of each particle xi is constructed as,

Where, K is the number of clusters, cij is the j-th
cluster centre of the i-th particle. Then the swarm
represents a candidate cluster result. The fitness of
each particle is measured as,

Where d(xi, cj) is defined in the Equation and cj is the j-th
cluster

Mutation generation
 The results obtained in the clustering and PSO
techniques are then applied in mutation testing to find
efficient test cases which are able to distinguish mutant
program from original program. Mutation testing involves
the substitution of simple code constructs and operands
with syntactically legal constructs to simulate fault
scenarios. The method level and class level operators are
selected and executed.
 The mutated program, i.e., the mutant, can then be re-
executed against the original test cases to determine
whether it can kill the mutant exists (i.e., killed mutants
exhibit different behavior from the original program when
exercised by one or more test cases). If the mutant is not
killed by the test cases, then these test cases are insufficient
and should be enhanced. This process of re-executing tests
can continue until all of the generated mutants are captured
(or “killed”) by the test cases.

RESULTS AND DISCUSSIONS
The purpose of the experiment is to find efficient test cases
using mutation testing together with KPSO techniques. The
result of the existing work is compared with the proposed
work. Therefore, the performance of the system is
evaluated based on the following performance metrics.

Time Performance:
The time quantifies the amount of time taken by an
algorithm to run as a function of size of the input to the
problem. The following graph fig 5.1 indicates the
performance measures for the time complexity. It indicates
the total time taken to find out the mutants applied in the
program.

Fig :1 Time performance

 (1)

2/1dw

1i
jmimii)X()C,d(X

C

sx

jj X
n

1
C (2)

xi = (ci1, ci2,…, ciK)

Fitness =

K

ji)c ,(x d

1

S.Preetha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4235-4240

www.ijcsit.com 4238

Memory Performance:
The memory quantifies the amount of memory taken by an
algorithm to run as a function of size of the input to the
problem. The following graph fig 5.2 shows the memory
utilization level. The result showed is memory utilized
while trying to find out the mutants applied on the original
coding.

Fig :2 Memory performance

Method Level Mutation Values:
 Method mutation operators are developed to handle all
the possible syntactic changes in the methods incorpate in
the program. It is stable and minimizes the number of
equivalent mutants that they generate.

Fig :3 Method level mutation values

Class Level Mutation Values:
 Class mutation operators introduce faults into classes
defined in the program using a set of class mutation
operators to handle syntactic modifications in the program.
The following graph fig 5.4 indicates the number of
mutation that is found while replacing the code with
mutants in the entire class of the programs.

Fig :4 Class level mutation values

CONCLUSION AND FUTURE WORK:
 In this work, the efficient test cases are identified
which can identify the created mutants with the high
flexibility. In this work, k-means algorithm is used to
identify the best test cases which can identify the mutants
with the most probability by grouping the similar test cases.
The proposed k-means based particle swarm optimization
technique is used to find the test cases which are most
efficient to predict the mutants generated in the coding.
 The performance analysis of our work proves that the
proposed method is more efficient than the existing work. It
can able to find the mutants generated manually with less
time complexity, less memory efficiency and more number
of killed mutants.
 In future, the high dimensional problems (programs)
ad large number of patterns can be handled. To achieve
this, the fitness function calculation can be extended. By
extending the fitness function, explicit optimization of the
inter- and intra-cluster distances can supported. The PSO
clustering algorithms will also be extended to dynamically
determine the optimal number of clusters.

REFERENCES:
[1] J. Offutt and R. H. Untch, “Mutation 2000: Uniting the Orthogonal,”

in Proceedings of the 1st Workshop on Mutation Analysis
(MUTATION’ 00), published in book form, as Mutation Testing for
the New Century. San Jose, California, 6-7 October 2001, pp. 34-44.

[2] K. N. King and A. J. Offutt, “A Fortran Language System for
Mutation- Based Software Testing,” Software:Practice and
Experience, vol. 21, no. 7, pp. 685–718, October 1991

[3] T. A. Budd and D. Angluin, “Two Notions of Correctness and
Their Relation to Testing,” Acta Informatica, vol. 18, no. 1, pp. 31–
45, March 1982.

[4] P. J. Walsh. A measure of test case completeness
(software,engineering). PhD thesis, State University of New York
at Binghamton,Binghamton, NY, USA, 1985

[5] P. G. Frankl, S. N. Weiss, and C. Hu. All-uses versus mutation
testing: An experimental comparison of effectiveness. Journal of
Systems and Software, 38:235–253, 1997

[6] J. Choi and A. P. Mathur. Use of fifth generation computers for
high performance reliable software testing. Technical report SERC-
TR-72- P, Software Engineering Research Center, Purdue
University, West Lafayette IN, April 1990.

[7] E. W. Krauser, A. P. Mathur, and V. Rego. High performance
testing on SIMD machines. In Proceedings of the Second
Workshop on Software.

S.Preetha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4235-4240

www.ijcsit.com 4239

[8] Aditya P. Mathur and E. W. Krauser. Modeling mutation on a
vector processor. In Proceedings of the 10th International
Conference on Software Engineering, pages 154{161, Singapore,
April 1988. IEEE Computer Society Press.

[9] Aditya P. Mathur and E. W. Krauser. Mutant unification for
improved vectorization. Technical report SERC-TR-14-P, Software
Engineering Research Center, Purdue University, West Lafayette
IN, April 1988.

[10] M. R. Girgis and M. R. Woodward. An integrated system for
program testing using weak mutation and data flow analysis. In
Proceedings of the Eighth International Conference on Software
Engineering, pages. 313{319, London UK, August 1985.

[11] R. G. Hamlet. Testing programs with the aid of a compiler. IEEE
Transactions on Software.

[12] R. A. DeMillo and E. H. Spafford, `The Mothra software testing
environment', Proceedings of the 11th NASA Software Engineering
Laboratory Workshop, Goddard Space Center, December 1986.

[13] R. A. DeMillo, E.W. Krauser, R. J. Martin, A. J. Offutt and E. H.
Spafford, `The Mothra tool set', Proceedings of the Hawaii
International Conference on System Sciences, Kailua-Kona, HI,
January 1989.

[14] Offutt, `An extended overview of the Mothra software testing
environment', Proceedings of the IEEE Second Workshop on
Software Testing, Verification and Analysis, Banff Alberta, July
1988.

[15] L. J. Morell. A Theory of Error-Based Testing. PhD thesis,
University of Maryland, College Park MD, 1984. Technical Report

TR-1395.

S.Preetha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4235-4240

www.ijcsit.com 4240

